• Schneider, MR, Schmidt-Ullrich, R. & Paus, R. The hair follicle as a dynamic mini-organ. Running. Biol. 19R132–R142 (2009).

    Google Scholar article

  • Ohyama, M. Hair follicle bulge: a fascinating reservoir of epithelial stem cells. J. Dermatol. Science. 4681–89 (2007).

    Google Scholar article

  • Morris, RJ et al. Capture and profiling of adult hair follicle stem cells. Nat. Biotechnol. 22411–417 (2004).

    Google Scholar article

  • Ito, M., Cotsarelis, G., Kizawa, K. & Hamada, K. Hair follicle stem cells in the lower bulge form the secondary germ, a biochemically distinct but functionally equivalent population of progenitor cells, at the end of catagen . Differentiation 72548-557 (2004).

    Google Scholar article

  • Lendahl, U., Zimmerman, LB & McKay, RDG CNS stem cells express a new class of intermediate filament proteins. Cell 60585–595 (1990).

    Google Scholar article

  • Day, K., Shefer, G., Richardson, JB, Enikolopov, G. & Yablonka-Reuveni, Z. Nestin-GFP reporter expression defines the resting state of skeletal muscle satellite cells. Dev. Biol. 304246–259 (2007).

    Google Scholar article

  • Zulewski, H. et al. Nestin-positive multipotential stem cells isolated from adult pancreatic islets differentiate ex vivo into endocrine, exocrine, and hepatic pancreatic phenotypes. Diabetes 50521–533 (2001).

    Google Scholar article

  • Jiang, MH et al. Characterization of Nestin-positive Leydig stem cells as a potential source for the treatment of testicular Leydig cell dysfunction. Cell Res. 241466-1485 (2014).

    Google Scholar article

  • Kachinsky, AM, Dominov, JA & Miller, JB Intermediate Filaments in Cardiac Myogenesis: Nestin in the Developing Mouse Heart. J. Histochem. Cytochem. 43843–847 (1995).

    Google Scholar article

  • Liu, F. et al. The bulge area is the hair follicle’s main source of nestin-expressing pluripotent stem cells that can repair the spinal cord compared to the dermal papilla. Cell cycle ten830–839 (2011).

    Google Scholar article

  • Amoh, Y., Li, L., Katsuoka, K., Penman, S. & Hoffman, RM Multipotent nestin-positive and keratin-negative hair follicle bulge stem cells can form neurons. proc. Natl. Acad. Science. UNITED STATES 1025530–5534 (2005).

    Google Scholar Article Announcements

  • Amo, Y. et al. Nascent blood vessels in the skin arise from hair follicle cells expressing nestin. proc. Natl. Acad. Science. UNITED STATES 10113291–13295 (2004).

    Google Scholar Article Announcements

  • Amoh, Y., Li, L., Katsuoka, K. & Hoffman, RM Chemotherapy targets the vasculature of the hair follicle, but not the stem cells. J. Invest. Dermatol. 12711–15 (2007).

    Google Scholar article

  • Amo, Y. et al. Nestin-expressing multipotent stem cells capable of forming neurons are located in the upper, middle and lower parts of the vibrissa hair follicle. Cell cycle 113513–3517 (2012).

    Google Scholar article

  • Sennett, R. et al. An integrated atlas of the transcriptome of embryonic hair follicle progenitors, their niche, and developing skin. Dev. Cell 34577-591 (2015).

    Google Scholar article

  • Onishi, S. et al. Progenitor cells expressing nestin, a marker of neural crest stem cells, differentiate into outer root sheath keratinocytes. Veterinary. Dermatol. 30365 (2019).

    Google Scholar article

  • Kawamoto, S. et al. A novel reporter mouse strain that expresses an enhanced green fluorescent protein upon Cre-mediated recombination. FEBS Lett. 470263–268 (2000).

    Google Scholar article

  • Isaka, F. et al. Ectopic expression of the bHLH Math1 gene disrupts neuronal development. EUR. J. Neurosci. 112582-2588 (1999).

    Google Scholar article

  • Kilkenny, C., Browne, WJ, Cuthill, IC, Emerson, M. & Altman, DG Improving bioscience research reporting: ARRIVE guidelines for animal research reporting. PLoS Biol. 8e1000412 (2010).

    Google Scholar article

  • Scheitz, CJF & Tumbar, T. New insights into the role of Runx1 in epithelial stem cell biology and pathology. J. Cell. Biochemistry. 114985–993 (2013).

    Google Scholar article

  • Muller-Rover, S. et al. A comprehensive guide to the accurate classification of murine hair follicles at distinct stages of the hair cycle. J. Invest. Dermatol. 1173–15 (2001).

    Google Scholar article

  • Alliot, F., Rutin, J., Leenen, PJ & Pessac, B. Pericytes and periendothelial cells of cerebral parenchymal vessels co-express aminopeptidase N, aminopeptidase A and nestin. J. Neurosci. Res. 58367–378 (1999).

    Google Scholar article

  • Toma, J.G. et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat. Cell Biol. 3778–784 (2001).

    Google Scholar article

  • Perdigoto, CN et al. Polycomb-mediated repression and Sonic Hedgehog signaling interact to regulate Merkel cell specification during skin development. PLoS Genet. 12e1006151 (2016).

    Google Scholar article

  • Yamada, J. & Jinno, S. S100A6 (calcycline) is a novel marker of neural stem cells and astrocyte precursors in the subgranular zone of adult mouse hippocampus: S100A6 (Calcycline) is a novel marker of adult neurogenesis. Seahorse 2489-101 (2014).

    Google Scholar article

  • Kelsh, RN Sorting outSox10 works in neural crest development. BioAssays 28788–798 (2006).

    Google Scholar article

  • Jahoda, CA, Reynolds, AJ, Chaponnier, C., Forester, JC & Gabbiani, G. Smooth muscle alpha-actin is a marker of hair follicle dermis in vivo and in vitro. J. Cell Sci. 99(Part 3), 627–636 (1991).

    Google Scholar article

  • Driskell, RR, Giangreco, A., Jensen, KB, Mulder, KW & Watt FM Sox2-positive dermal papilla cells specify hair follicle type in mammalian epidermis. Development 1362815–2823 (2009).

    Google Scholar article

  • Ito, M. & Kizawa, K. Expression of calcium-binding proteins S100 A4 and A6 in regions of the epithelial sac associated with the onset of hair follicle regeneration. J. Invest. Dermatol. 116956–963 (2001).

    Google Scholar article

  • Nonaka, D., Chiriboga, L. & Rubin, BP Sox10: A pan-Schwanian and melanocytic marker. A m. J. Surg. Pathol. 321291–1298 (2008).

    Google Scholar article

  • Fernandes, KJL et al. A dermal niche for skin-derived adult multipotent precursor cells. Nat. Cell Biol. 61082-1093 (2004).

    Google Scholar article

  • Frederiksen, K. & McKay, R. Proliferation and differentiation of rat neuroepithelial precursor cells in vivo. J. Neurosci. 81144-1151 (1988).

    Google Scholar article

  • Yang, J., Bian, W., Gao, X., Chen, L. & Jing, N. Nestin expression during mouse eye and lens development. Mech. Dev. 94287-291 (2000).

    Google Scholar article

  • Fröjdman, K., Pelliniemi, LJ, Lendahl, U., Virtanen, I. & Eriksson, JE Intermediate filament protein nestin occurs transiently in rat and mouse differentiating testes. Differentiation 61243-249 (1997).

    Google Scholar article

  • Wong, EC et al. Neural crest-derived cells with stem cell characteristics can be attributed to several lineages in adult skin. J. Cell Biol. 1751005-1015 (2006).

    Google Scholar article

  • Amo, Y. et al. Human and mouse hair follicles contain both multipotent and monopotent stem cells. Cell cycle 8176–177 (2009).

    Google Scholar article

  • Liu, Y., Lyle, S., Yang, Z. & Cotsarelis, G. Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. J. Invest. Dermatol. 121963–968 (2003).

    Google Scholar article

  • Sieber-Blum, M. et al. Characterization of epidermal neural crest stem cell (EPI-NCSC) transplants in the injured spinal cord. Mol. Cell Neurosci. 3267–81 (2006).

    Google Scholar article

  • Mistriotis, P. & Andreadis, ST Hair follicle: A novel source of multipotent stem cells for tissue engineering and regenerative medicine. Tissue Eng. Part B Rev. 19265-278 (2013).

    Google Scholar article