• Adão, T. et al. Hyperspectral Imaging: A Review of Drone-Based Sensors, Data Processing, and Applications for Agriculture and Forestry. Telesens. 91110 (2017).

    Google Scholar Article Announcements

  • Lu, G. & Fei, B. Medical hyperspectral imaging: a review. J. Biomed. Opt. 19010901 (2014).

    ADS PubMed Central Google Scholar Article

  • Krupnik, D. & Khan, S. Short-range ground-based hyperspectral imaging for mining applications at different scales: review and case studies. Earth Sci. Round. 198102952 (2019).

    CAS Google Scholar Article

  • Dudley, JM, Genty, G. & Coen, S. Supercontinuum Generation in Photonic Crystal Fiber. Rev. mod. Phys. 781135 (2006).

    ADS CAS Google Scholar Article

  • Genty, G., Coen, S. & Dudley, JM Fiber supercontinuum sources. JOSA B 241771–1785 (2007).

    ADS CAS Google Scholar Article

  • Saleh, A., Aalto, A., Ryczkowski, P., Genty, G. & Toivonen, J. Short-range supercontinuum-based lidar for temperature profiling. Opt. Lett. 444223–4226 (2019).

    ADS CAS PubMed Google Scholar Article

  • Saleh, A., Ryczkowski, P., Genty, G. & Toivonen, J. Supercontinuum lidar for industrial process analysis. Opt. Express 2942082–42089 (2021).

    ADS CAS Google Scholar Article

  • Kilgus, J., Duswald, K., Langer, G. & Brandstetter, M. Mid-infrared distance spectroscopy using a supercontinuum laser with compact Fabry-Pérot filter spectrometers. Appl. Spectrosc. 72634–642 (2018).

    ADS CAS PubMed Google Scholar Article

  • Kääriäinen, T., Jaanson, P., Vaigu, A., Mannila, R. & Manninen, A. Active hyperspectral sensor based on the mems fabry-perot interferometer. Sensors 192192 (2019).

    ADS PubMed Central Google Scholar Article

  • Kääriäinen, T. & Dönsberg, T. Active hyperspectral imager using a tunable supercontinuum light source based on a mems fabry-perot interferometer. Opt. Lett. 465533–5536 (2021).

    ADS PubMed Google Scholar article

  • Petersen, CR et al. Mid-infrared supercontinuum spanning 1.4-13.3 (mu)m Molecular fingerprint region using ultra-high na chalcogenide step index fiber. Nat. Photonics 8830–834 (2014).

    ADS CAS Google Scholar Article

  • Zhao, Z. et al. Mid-infrared supercontinuum spanning 2.0–16 (mu)m in a low-loss telluride single-mode fiber. Laser Photonics Rev 111700005 (2017).

    Google Scholar Article Announcements

  • Liu, K., Liu, J., Shi, H., Tan, F., and Wang, P. High-power mid-infrared supercontinuum generation in single-mode zblan fiber with average output power up to 21.8 w . Opt. Express 2224384–24391 (2014).

    ADS CAS PubMed Google Scholar Article

  • Kedenburg, S. et al. 1.3 to 5.3 high repetition rate mid-infrared supercontinuum generation (mu)m in rugged step-index tellurite fibers. JOSA B 34601–607 (2017).

    ADS CAS Google Scholar Article

  • Salem, R. et al. Mid-infrared supercontinuum generation spanning 1.8 octaves using a step-index indium fluoride fiber pumped by a near-2 femtosecond fiber laser (mu)Mr. Opt. Express 2330592–30602 (2015).

    ADS CAS PubMed Google Scholar Article

  • Eslami, Z., Ryczkowski, P., Salmela, L. & Genty, G. Low-noise mid-infrared supercontinuum generation in multimode chalcogenide fiber. Opt. Lett. 453103–3106 (2020).

    ADS PubMed Google Scholar article

  • Mikkonen, T. et al. Mid-infrared cantilever enhanced broadband photoacoustic spectroscopy using a supercontinuum. Opt. Lett. 435094–5097 (2018).

    ADS CAS PubMed Google Scholar Article

  • Petersen, CR et al. Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source. Opt. Lett. 43999-1002 (2018).

    ADS CAS PubMed Google Scholar Article

  • Zorine, I. et al. Optical coherence tomography in the Fourier domain in the mid-infrared with a pyroelectric linear grating. Opt. Express 2633428–33439 (2018).

    ADS CAS PubMed Google Scholar Article

  • Hollas, JM Modern spectroscopy (John Wiley & Son, 2004).

    Google Scholar

  • Signoret, C., Caro-Bretelle, A.-S., Lopez-Cuesta, J.-M., Ienny, P. & Perrin, D. Mir spectral characterization of plastic to enable discrimination in an industrial recycling context: I. Special case of styrenic polymers. Waste management 95513–525 (2019).

    CAS PubMed Google Scholar Article

  • Risanen, A. et al. Mtb’s Fabry-Perot interferometer technologies for hyperspectral imaging and mobile sensing applications. . In Moems and miniaturized systems Xvi Flight. 10116.pp. 119–130 (International Society of Optics and Photonics, 2017).

  • Akujärvi, A., Guo, B., Mannila, R. & Rissanen, A. Moems fpi sensors for nir-mir microspectrometer applications. In Moems and miniaturized systems Xv Flight. 9760.pp. 117–124 (International Society of Optics and Photonics, 2016).

  • Rissanen, A., Akujärvi, A., Antila, JE, Blomberg, M. & Saari, HK MOESMs miniature spectrometers using tunable fabry-perot interferometers. J. Micro/Nanolithogr. MEMS MEMS 11023003 (2012).

    Google Scholar article

  • Rissanen, A., Mannila, R., Tuohiniemi, M., Akujärvi, A. & Antila, J. Moems tunable fabry-perot interferometer for miniaturized near-infrared spectral detection. in MOEMS and miniaturized systems XIII Flight. 8977.pp. 243–250 (International Society of Optics and Photonics, 2014).

  • Amiot, C., Aalto, A., Ryczkowski, P., Toivonen, J. & Genty, G. Mid-infrared cavity-enhanced absorption spectroscopy using a supercontinuum source. Appl. Phys. Lett. 111061103 (2017).

    Google Scholar Article Announcements

  • Kudlinsky, A. et al. Monitoring pulse-to-pulse fluctuations in the visible supercontinuum. Opt. Express 1827445–27454 (2010).

    ADS CAS PubMed Google Scholar Article

  • Becker, W., Sachsenheimer, K. & Klemenz, M. Detection of black plastics in the mid-infrared (MIR) spectrum using the photon conversion technique for polymer recycling. Polymers 9435 (2017).

    PubMed Central Google Scholar Article